The CaPriCon Scripting Language Reference

Marc Coiffier

Contents

Stack manipulation oL o

Names and variables

Interacting with the environment
String-Indexed Dictionaries L.
Constructing typed terms
Analysing typed terms oL
Managing the type context,

All the basic words are described below.

Stack manipulation

The environment of the interpreter consists mostly of a stack of values, that can
be manipulated with the following words.

dup / dupn Duplicates the top element, or the nth top element of the stack.

e dup: .. = xT..

e dupn: n x9..Tn ... — Ty To..Tp ...

swap / swapn Swaps the top element of the stack with the second, or the nth
element.

e SWapP: T Y. = YT ...

e SWapn : N T Yo-Yn - — Yn Y0--Yn—-1 T ...

shift / shaft Shifts the nth element towards the top, or shaft the top to the
nth place.

e shift: nxzi.xp ... & Ty T1.-Tp_1 ...

e shaft: nzxzi.xy ... = T2..T, T1...
pop / popn Pops the top element, or the nth top element, off the stack.
e POpP: T ... — ...
e POPL : M ZQ..Tp ... —> TQ.Lpy—q ...
clear Clears the stack.
e clear: ... —

stack / set-stack Pushes the current stack, as a list, on top of the current
stack. In the second case, sets the top element of the stack as the new
stack.

o stack: Stack — [Stack]Stack
o set-stack : [Stack]... — Stack

pick Picks the i-between-nth element of the stack, and discards all others. Can
be useful for implementing arbitrary switch-like control-flow.

e pick: i m Tg..Tj-Tp—1 .. — Tj ...

Names and variables

def Sets the value of a variable.

e def : value name ... — ... in an environment where value is associated
with the variable named name.

Examples :

'x 3 def 'y 7 def
Xyxy+y*"(x+y)ky="Y%v; y="%v; x="%v" printf
(x+y)*y=70y=7;x=3

$ The inverse of def. Given the name of a variable at the top of the stack, this
function produces the value of the corresponding variable in the current
environment.

e $: name ... = Sname ...

vocabulary / set-vocabulary Pushes the active dictionary, that contains all
defined variables, on top of the stack. In the second case, make the top of
the stack the current dictionary, redefining all variables at once.

lookup A more flexible version of $, where the environment is specified explicitly
as a second argument (for example, from calling vocabulary).

First-class functions

exec Executes the value at the top of the stack, as if it were the meaning of a
word. To illustrate, given a function, 'f $ exec is equivalent to f itself.
That is, evaluating a symbol is no different than looking it up in the current
dictionary, and executing its value.

Lists

[Puts a “list beginning” (LB) marker on the stack
e [:... - LB ..

1 Creates a list of the elements on the stack until the next “list beginning”
marker, and pushes it on the remaining stack.

o 1: 2.y LB ... = [zg..20] ...

each Iterates over each element of its second argument, pushing it on the stack
and running its second argument afterward.

Examples :
"Values: " print [1 2 3] { show pop } each

Values: 12 3

range Create a list of numbers from 0 to n — 1, n being the top element of the
stack.

e range: n .. — [0.n—1] ..

Simple integer arithmetic

+, —, *, div, mod Performs the usual binary arithmetic operation on the top
two elements of the stack, and replaces them with the result.

sign Computes the sign of the top stack element. If the sign is negative, produces
—1, if positive produces 1, otherwise produces 0.

Strings

format Much like the sprintf () function in C, produces a string which may
contain textual representations of various other values.

Examples :

"Some text" 1 "<p>jv: %s</p>" format show

1: Some text

n

to-int Tries to convert the top stack element to an integer, if possible.

Interacting with the environment

exit Exits the interpreter, immediately and unconditionally.
print Print the string at the top of the stack into the current document.

source Opens an external source file, and pushes a quote on the stack with its
contents.

cache Given a resource name and a quote, does one of two things :

o if the resource already exists, try to open it as a CaPriCon object,
ignoring the quote

e otherwise, run the quote and store its result in the resource for future
use

After the builtin has run, the contents of the requested object can be found
at the top of the stack.

redirect Given a resource name and a quote, executes the quote, redirecting
its output to the resource.

String-Indexed Dictionaries

empty Pushes the empty dictionary onto the stack.

insert Given a dictionary d, a key k and a value v, inserts the value v at k in
d, then pushes the result on the stack.

delete The reverse of insert. Given a dictionary d and a key k, produce a
dictionary d' that is identical to d, without any association for k.

keys Given a dictionary d, pushes a list of all of d’s keys onto the stack.

Constructing typed terms

universe Produces a universe.
e universe: i .. — Set; ...

variable Given a variable name, that exists in the current type context, pro-
duces that variable.

o variable : name ... — var(name) ...
apply Given a function f, and a term x, produces the term f x.
e apply:z f ... = (fx) ..

lambda / forall Abstracts the last hypothesis in context for the term at the
top of the stack. That hypothesis is abstracted repectively as a lambda-
abstraction, or a product.

e lambda: (Ih:Tptx) ... > (O (Mh:Tp).2)) ..

o forall: (Lh:Tptxz) ... = (T V(h:Th),z)) ...

mu Produces an inductive projection to a higher universe for the term at the top
of the stack, if that term is of an inductive type.

e mu: x ... = u(x)..

axiom Given a combinatorial type (a type without free variables) and an associ-
ated tag, produce an axiom with that tag, that can serve as a proof of the
given type.

e axiom: tag T ... = Axiomy ieg ..

Analysing typed terms

type Computes the type of the term at the top of the stack.

match Given a quote for each possible shape, and a term, executes the corre-
sponding quote :

o kset kx kv kapply ku kvar Kaziom match :

o [THFNa:Ty)y) ... = kx(Tyx:ToF 2y..)
o [TFMz:Ty)wy) ... = ky(Tyz:T,F zy..)
o | (fri.2n) ... = kappiy([z1..20] f..0)

o | p(x) ... = ku(x...)

o |z ... = kyar(name(z) ...)
o | Aziomr tag .. — Kaziom(tag T ...)

o | Sety, ... = kget(n ...)

extract Extract the term at the top of the stack into an abstract algebraic
representation, suitable for the production of foreign functional code, such
as OCaml or Haskell.

Managing the type context

intro Given a type T and a name H, adds a new hypothesis H of type T to
the context. Alternately, you can give a second hypothesis name H’, in
which case the new hypothesis will be introduced before H’.

intro :
-|Tkname(H)T ... - T,H: Tk ..
-| T H Ty, AFname(H') name(H) T ... - T, H:T,H : Ty, A ..

extro-lambda / extro-forall Clears the last hypothesis from the context.
Every term that references that hypothesis is abstracted either as a lambda-
expression, or as a product, depending on the variant that was called.

rename Renames a hypothesis. This function takes two parameters : a hypothesis
name, and the new name to give it.

substitute Given a hypothesis name, and a term of the same type as that
hypothesis, remove that hypothesis from the context by substituting all its
occurences by the given term.

hypotheses Pushes a list of all the hypotheses’ names in context, from most
recent to the oldest.

	Stack manipulation
	Names and variables
	First-class functions
	Lists
	Simple integer arithmetic
	Strings
	Interacting with the environment
	String-Indexed Dictionaries
	Constructing typed terms
	Analysing typed terms
	Managing the type context

