
First steps with CaPriCon

Marc Coiffier

Contents

Stacks, and The Stack . 2

Your First Words . 3

Nouns . 3

Verbs and Vocabularies . 3

Quotes . 4

Proof assembly 6

Types and Universes . 6

The proof context . 6

Introducing new hypotheses . 6

Using hypotheses . 7

Clearing hypotheses . 7

Functions, Products and Applications 7

1

This page is intended as a tutorial on the use of a stack-based proof environment
like the one provided on this site. Since we’re going to need to print things out,
and we don’t yet have the knowledge to write such features ourselves, let’s first
import a few useful functions from a preexisting module.

'utils require import

• Required module: utils

Among other things, this module defines one function that will be of interest
to us : vis. When called, this function simply prints out every hypothesis in
context and every value currently on the stack. It’s very useful as the final word
in a sentence, to show the resulting context. It doesn’t change anything, so feel
free to sprinkle it at any point of your scripts for debugging purposes.

Now, in order to understand what a stack-based language is, we first have to
understand the basic concept of a stack, and the role it plays during the execution
of a script.

Stacks, and The Stack

A stack, in general, is a list of values, to which we arbitrarily assign two
extremes, a top and a bottom. We can operate on either side, but as a general
simplifying convention, all stack operations will take place at the top unless
specified otherwise.

The most fundamental operations that can be carried out on a stack are pushing
and popping values to and from it (at the top).

\

What does that have to do with CaPriCon ? Well, stack-based languages, as their
name implies, implicitly operate on a stack, that serves as temporary storage for
all the intermediate results of a computation. When we talk about the stack,
without any more context, you can assume we’re talking about this one.

In most stack-based languages, including CaPriCon, words designate instructions
that modify the stack according to predefined rules, and complex scripts can
be written by stringing words together in the right order, changing the stack in
ever more interesting ways.

2

Your First Words

Let’s start talking a little. As mentioned above, a sentence (or program) is
comprised of several words separated by whitespace. Words can fall into one of
three categories :

• nouns are constant words, that push a value onto the stack when run
• verbs are operational words, that can modify the stack or the environment

when they are run
• quotes are sequences of steps, where a step can be either a word step, or a

splice step (quotes and steps will be described in more detail below).

Nouns

The simplest kinds of words are nouns, more commonly known as atoms or
symbols, and are written as a single quote ('), followed by some non-space
characters.

'Bender

As you can see, each noun you write is pushed onto the stack, in the order in
which they appear. Nothing mysterious here.

The CaPriCon interpreter also recognizes numbers1, in the usual decimal format,
as another kind of noun, which means they will mostly behave as expected.

1 2 100

You now know what happens when you write 'vis, but how does vis alone get
interpreted ?

Verbs and Vocabularies

In parallel to the stack, the interpreter also features its own vocabulary, which
provides a correspondance between all the known nouns and their definitions.

Whenever a verb is run, the interpreter looks into its vocabulary for the meaning
of that verb and executes it, with a different strategy depending on that meaning
:

• if it is a quote, then the interpreter runs each step in the quote
1For now, 32-bit integers are the default, but if the need arises, I’ll be glad to throw in

some BigInt or floating-point support

3

• if it is a special builtin operation, then that operation is run according to
its definition. The initial vocabulary provides a few builtins operations of
that sort, which are listed here.

• otherwise, it is simply pushed onto the stack, as a constant

There are two main verbs to interact with the vocabulary : def, for adding new
definitions, and overriding old ones; and $, for looking symbols up. They can be
used as follows :

'x 3 def 'y 4 def

Of course, the most interesting verbs, and the ones I kept for last, are the ones
referencing quotes, because they allow you to build upon simpler concepts to
yield complex effects.

Quotes

Many stack-based language have features similar to our quotes. Let’s start there.

The raison d’être of a quote is, simply put, to be able to write a program and
keep it in stasis, until it can be run from a verb (or from the stack, using the
builtin verb exec). In CaPriCon, this can be achieved by enclosing the sentence
you want to “freeze” in brackets, like so :

pop pop pop 'is 'great
{ swap 2 shift "%s %s %s !" format }

That’s all fairly straightforward, which is nice, but quotes of this form aren’t
very dynamic. They will always depend on, and possibly modify, their surround-
ing environment during evaluation (a feature commonly known as “dynamic
binding”), which, while very flexible, doesn’t provide a reliable way to write
composable programs.

This may not seem like a problem right away, and indeed it isn’t for the kinds
of small examples we’ve been playing with, but for more reusable scripts, you
should always be careful about the environment you leave behind when you’re
done with your work. Also, it’s kind of a good feeling when you know your
programs won’t accidentally rewrite an index and start an infinite loop.

Splices and quotes : a case study

To better illustrate the need for a more powerful construct, let’s imagine we want
to be able to execute a quote in a local environment, so that all nouns defined
during that quote’s execution don’t accidentally override the outside vocabulary.

4

The idea is to use the vocabulary verb to retrieve the vocabulary before executing
the quote, save that vocabulary somewhere, then run the quote (which can
perform arbitrary modifications to the stack and the vocabulary), and finally
restore the old vocabulary afterwards using set-vocabulary.

The question is : where do we save the old vocabulary, so that executing our
argument won’t accidentally override the place we chose ? Given what we know
about the stack and the environment, nowhere is safe. A value on the stack can
always be popped or cleared, and a definition in the vocabulary can always be
overridden.

Answer : we save it in a quote. Without further ado, here is the solution that
CaPriCon proposes :

clear 'local-exec {
{ exec ,{ vocabulary } set-vocabulary }
exec } def

Let’s break this down : local-exec is defined as the quote that, first, creates a
new quote by splicing a constant – derived from running vocabulary – between
executing the top of the stack (our only argument of interest) and resetting the
vocabulary to whatever the constant was at the time of creation.

Then, local-exec simply calls exec to run the newly-created quote that already
remembers the vocabulary from before. Our argument gets executed, then the
old vocabulary that was captured is pushed on the stack, only to be immediately
restored to its rightful place by set-vocabulary. We now have the newly
calculated stack, in an environment where our vocabulary is unchanged.

\

This concludes the tour of all the basic CaPriCon language features. Once you’ve
mastered those three concepts (nouns, verbs and quotes), and learned about
enough builtin operations, all the programs, proofs and examples presented from
this point on will be within your reach.

There’s just one last detail we haven’t gotten around to : building actual proofs.
Until now, we’ve been playing around with names and definitions, but we haven’t
yet proven anything of interest. That’s with good reason, because we don’t yet
know how to build proofs.

Please bear with me for this last section, as I try to explain how to build
mathematical proofs out of stacks, quotes and a bit of magic.

5

Proof assembly

The easiest way to get comfortable manipulating mathematical proofs and
theorems is to treat them like regular objects. In CaPriCon, theorems and proofs
– which will hereafter be referred to as terms – are like numbers and symbols,
that can be pushed onto the stack, or saved in the vocabulary.

Types and Universes

The most common kind of basic term you’ll encounter are universes, noted Setn,
where n ∈ N is the level of that universe. You can introduce them with the
universe builtin, that takes in a level and pushes a universe of that level on the
stack :

0 universe

We just proved something ! Granted, we only proved that some universes exist,
by giving an example of one, but still. Using that universe as a starting point,
we can explore a bit further.

The first useful thing we can do given a term is ask CaPriCon to give us its type,
unsurprisingly by using the type builtin.

dup type

We can see that Set0 has type Set1. In general, when a term has type Setn
for some n, we can treat that term as a type, that may or may not contain
objects. Every well-formed term has a type, that can be computed with type as
we observed, but not every well-formed term is a type.

The proof context

Many mathematical proofs begin by assuming the existence of a few objects,
before studying those objects in more detail (“let n, m be two natural numbers,
. . . ”, “let f be a function from A to B, . . . ”). Once those objects are introduced
to the reader, the rest of the proof can refer to them as though they already had
a proper value of the given type.

Introducing new hypotheses

CaPriCon works in a similar way. If we have a type on top of the stack, like we
do now, we can introduce a variable (or hypothesis) of that type. Introducing

6

a new hypothesis from a type is equivalent to assuming that at least one term of
that type exists, without caring about that term’s specific shape.

If our type is a universe, like Set0, we’ll call such a hypothesis a property of its
type, as a convention. Otherwise, we’ll usually call it a witness of some property.

pop 'Prop intro

Using hypotheses

We now have a fresh but unknown property of Set0, called Prop, in the context.
We can retrieve that property by using its name, using the variable builtin,
and check that it is indeed an element of the universe Set0.

'Prop variable

We can go further, though. Our property Prop is still a type (because it has a
type of shape Setn, remember ?), so we can introduce a witness of it if we want.
Let’s call that witness p :

'p intro

Clearing hypotheses

Once a variable has been introduced, and used to construct some terms, it
can be extroduced from the context, which has the effect of closing those terms
under binders. The builtin verbs extro-lambda and extro-forall have the
function of extroducing the last hypothesis that was introduced, respectively
using lambda abstractions and products (“forall”).

In our running example, we can for example create the term λ(p : Prop).p by
extroducing a lambda abstraction after creating the term p .

'p variable 'Prop variable extro-lambda

Notice how the p hypothesis disappeared from the context, only to be found
“transferred” to the terms on the stack that reference it. The Prop hypothesis
was not affected because it couldn’t possibly refer to p, being defined before it.

\

That’s about all there is to hypotheses : use intro to create new ones; create
some terms using variable et al.; and finally, clear them from the environment
using some kind of extroduction.

Functions, Products and Applications

7

	Stacks, and The Stack
	Your First Words
	Nouns
	Verbs and Vocabularies
	Quotes

	Proof assembly
	Types and Universes
	The proof context
	Introducing new hypotheses
	Using hypotheses
	Clearing hypotheses

	Functions, Products and Applications

