The Nat type is defined to \(Natural\)Nattex. \(λ(\mathrm{n}:Natural).\,\mu(\mathrm{n})\)Nat’nrecursorduptex has type \(∀(\mathrm{n}:Natural)\,(\mathrm{Nat}^P:Natural \rightarrow Set_{1}),\,\mathrm{Nat}^P\,0 \rightarrow (∀(\mathrm{n}_{0}:Natural),\,\mathrm{Nat}^P\,\mathrm{n}_{0} \rightarrow \mathrm{Nat}^P\,(S\,\mathrm{n}_{0})) \rightarrow \mathrm{Nat}^P\,\mathrm{n}\)typetex.
\(λ(\mathrm{n}:Natural).\,S\,\mathrm{n}\)succduptex has type \(Natural \rightarrow Natural\)typetex.